
9.2 Equivalent circuits of single-phase transformers 
A. From Fig. 9.1 we take for the ideal transformers the basic equation: 
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UZ =  and n is the transformer coefficient or transformer ratio. 

In Fig. 9.3 you see the network of a transformer which corresponds to Fig. 9.1, where R1, R2 
are the ohmic resistors of the wrappings and M is the mutual inductance between primary and 
secondary (see also Volume A, page 178). This circuit is applied to semitonal currents and 
voltages and as long as we accept even magnetic fields in the two legs of the magnetic circuit 
of the ferrite core. Fig. 9.3 also gives us: 
 

U1 = (R1 + jωL1)I1 – jωM’I2’ 
 

U2 = jωM’I1 – (jωL2’ + R2’)I2’ 
 

 
Figure 9.3 

 
The equations 9.2a, b include sizes open in the primary (those accented), that is they are 
transformed in connection with n. The sizes of the primary are not transformed, though the 
sizes of the secondary do. The opened sized are changing as following: the voltages are 
multiplied by n, R and L are multiplied by n2 and the currents are divided by n. Thus, we have: 
I2’=I2/n, U2’=n·U2, L2’=n2·L2, R2’=n2·R2 and M’=n·M. In the same quadric-pole equations we 
notice that the transformation coefficient n is eliminated, which, on demand, can be taken as 
real (as now) or complex number. So, we can, on demand, design many equivalent circuits, 
as long as they correspond to the above quadric-pole equations. 
We know that a quadric-pole is reversible when consisted of only R, L, C and M elements and 
we have Z12=-Z21 or Y12=-Y21. In the transformers we have both requirements because its 
equivalent consists of passive elements and we have (as 9.2a and b indicate) jωM’=-jωM’. 
So, the transformers are reversible quadric-poles. 
After that, we can design the type T equivalent circuit of a transformer, with losses in low 
frequencies (we don’t mention the parasitic capacities), namely of a real transformer. In Fig. 
9.4a we show you the equivalent circuit and in Fig. 9.4b the vectorial diagram of a transformer 
with losses and ohmic load. 
 



 
Figure 9.4b 

 
At first, the self-inductances of the coils of primary and secondary are consisting of two parts: 
the self-inductance featuring the magnetic flow on the ferrite core M and the self-inductance 
featuring the magnetic flow, which when coupled with a part o coil, it is distributed inside the 
ferrite core Lσ (distributing self-inductance). Both the self-inductances Lσ1+M’and Lσ2+M’ are 
connected sequentially, because the magnetic flows cause voltages and the sum of those 
voltages provides the total inducted voltage. The wrapping voltages R1 and R2’ are connected 
sequentially with the total inductance, because through them, the total voltage splits in two 
voltage drops. Rαπ’ is connected parallel with the self-inductance M’, because there appears a 
complemental current Iαπ’. Finally, another complemental current is appearing, because of the 
changes in the ferrite flow, namely in the Iδ’ through Rδ and Lδ which are parallel connected to 
self-inductance M’ (Rδ and Lδ in series). Iδ’ is the current (eddy or Foucault) creating reverse 
ampere-turns. Because just the flow in the ferrite core is the cause of that –due to 
remagnetization- of the created heating, Rαπ’ characterizes the thermal losses. 
We notice now in the diagram in Fig. 9.4b that Iαπ is in phase with voltage UM’ (parallel 
vectors) and it is ahead of Iμ’ (vertical vectors Iαπ+Iμ). Their vectorial sum Iαπ+Iμ = Iβ is the 
current of the void operation of the transformer and when I2’=0, then Il=I1. In the void 
operation, there is only the action of the primary and the core resistance is determined by the 
mutual inductance M. Also, the magnetic flow Φ is in phase with the magnetization current Iμ 
(parallel vectors). Taking into account the losses of the eddy currents, the current Iδ is in 
phase with URδ’ and we must have URδ’ + ULδ’ = UM’. Ιδ’ increases along with Iμ in Iμ’ and Iαπ in 
Iαπ’. Thus, the current of the void operation of the transformer increases in Il’. The current I2’ is 
in phase with U2’ because there is ohmic load. Shifting I2’ to the available Il’, we conclude I1’. 
I1·R1 is in phase with I1 and I1·jωLσ1┴I1. I2·R2’ is in phase with I2’ and I2·jωLσ2┴I2’. We also 
have UM’=U2’+I2’(R2’+jωLσ2) and Iμ’┴UM’. Finally, we have U1’ = UM’ + I1 (R1 + jωLσ1) and 
because U1 is ahead of I1, we conclude that the primary, when having ohmic load, it is 
charged inductively. Respectively, with inductive load of the secondary, the load has smaller 
voltage than the one it should have by the transformation coefficient, while with capacitive 
load, the voltage of the load will be bigger than the one it should have. It turns out that the 



bigger the coupling ( 21 kkk ⋅= ) between two wrapping of a transformer, the more it 
approaches the ideal transformer. The contrary applies for distributing, since the distributing 
coefficient is σ=1-k2 by default and actually, it is σ≤1‰. 
The copper losses Pcu≈2I22·R2 are increasing with the current of the load, proportionally to n2, 

while the iron losses 
απR

U
PFe

2
1≅  are independent of the load. You can see all them clearly in 

Fig. 9.5. 
 

 
Figure 9.5 

 
Suppose that the real transformer is connected with a semitonal voltage generator of interior 
resistance Ri. The bandwidth of the transformer is determined by fL and fH in -3dB and it is 
BW=fH-fL. We also have: 
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where L1, L2 are the self-inductances of the primary and secondary respectively and RL the 
load resistance. 
It is clear that if Ri and RL are different, then with a given transformer, the smaller resistance 
determines fL and the bigger resistance determines the fH. For given Ri, RL and for the 
smallest possible fL, L1 and L2 must take their highest possible values. For a specific fL and in 
order for fH to take its highest value, σ must be reduced as much as possible. So, the demand 
for small fL and big fH are contradicting. You can see all this in Fig. 9.6. 
 



 
Figure 9.6 

B. The auto-transformer or transformer with a single wrapping, consists of a coil which is used 
both as primary and secondary and a part of the primary is also used as secondary wrapping. 
In the auto-transformer step-up in contrary, the wrapping of the primary is a part of the whole 
wrapping, namely of the secondary. In Fig. 9.7a we show an auto-transformer step-down 
(voltage reduction) and in Fig. 9.7b we show an auto-transformer step-down. The equation 
9.1 stands for the ideal auto-transformer. In the step-down transformer, we have IΒΓ=I2-I1, 
while in the step-up one we have IΒΓ=I1-I2. We also notice that in the first, the current IΒΓ is 
balancing with I2 and counterbalancing with I1, while in the latter, we have the opposite. We 
also have n≥1 in the step-down transformer and n≤1 in the step-up transformer. 
We define as anagoge coefficient α the ratio P2’/P2, where P2’ is the actual phenomenal 
power of the secondary P2’=U2(I2-I1) and P2 is the phenomenal power including the secondary 
P2=U2·I2, for a step-down auto-transformer without losses. Thus, we have: 
 

 
 
and for a step-up auto-transformer: 
 

 
 

 
Figure 9.7 

 
Comparing the auto-transformer with a transformer with the same features, it turns out that: 1. 
the auto-transformer shows smaller iron losses than the transformer, because in the auto-



transformer, there is an economical use of ferromagnetic material, 2. it shows less copper 
losses, since the common wrapping diffuses by the difference between I1 and I2, and 3. as a 
consequence of the above, it shows higher performance, depending of course by the 
coefficient n (the common values of n are 1~2 for a step-down auto-transformer and 0.5~1 for 
a step-up auto-transformer). Its major disadvantage is the lack of electric insulation between 
primary and secondary which results to constraining its use in relatively low frequencies. 
You must take extra care to the connection of an auto-transformer, so as to avoid connecting 
the grounded end of the load to the network phase. That’s why we must first identify the poles 
of the network. 
The equivalent circuit of the auto-transformer is the same with the transformer in Fig. 9.4a, 
except for the fact that all parameters, besides RL’, are multiplied with the anagoge coefficient 
α, for step-down and step-up respectively. 



9.4.3.2 Special applications 
A. Deferential transformer: In Fig. 9.18a you can see an inductive sensor of linear 

movement. When an AC signal is applied on a coil, the size and the phase of the 
signal on the other coil is depending on the location of the ferrite core between the two 
coils. The size of the output signal is changing as shown in fig. 9.18b and it shows its 
maximum value in more than one locations. This is a disadvantage; what’s more, the 
curve of the output voltage is never proportional to the distance of the core between 
the two coils. 

 
Figure 9.18a   Figure 9.18b 

  
 
 
A development of the inductive sensor is the linearly variable differential transformer (LVDT), 
the most applicable distance sensor, from few mm to some cm. 
In Fig. 9.18c, the component is based on three stable coils, from which one powered with AC 
signals. The other two are connected to a phase detector through a differential transformer. 
When the ferrite core is moving on the axis of the coils, the output of the detector is 
proportional to the distance of the ferrite core from one end of the coils and this proportion is 
linear. 
Its advantages are the good electric isolation between ferrite core and coils, the high output 
signal of the coils, the good operation in conditions in which there are shock vibrations and 
too much movement if the ferrite core. 
LVDTs with AC and DC power are available in the market. The DC types include an oscillator 
which provides AC voltage to the coil (usual value 5KHz). The small-sized LVDTs are used 
for distances (±1~±5)mm and the big-sized ones for distances up to ±62mm. In fig. 9.18d, you 
see a DC type miniature LVDT. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 9.18c 

 
Figure 9.18d Figure 9.18e 

 

 
 
The differential transformer is used to convert double-wired telephone lines to four-wired lines 
and vice versa. This is shown in Fig. 9.18e, in which the input and the output of the two 
directions are connected to the opposite ports of the transformer so that there is no leak 

between them. If R2=R3=R4 are equal to the end resistance of port 1, then 
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we have 421 2III =+  and 321 2III =− . 
 

B. The rotated transformers are used, for example, in the rotated magnetic head of videos 
and are placed between the rotor and the stator to carry the signal collected by the 
head in the amplifier of the stator; they use high quality and reliability ferrite and are 
designed so as to show small divergence among the channels. In Fig. 9.19 we show 
you the rotor and stator coils of four channels. 

 



 
Figure 9.19 

 


