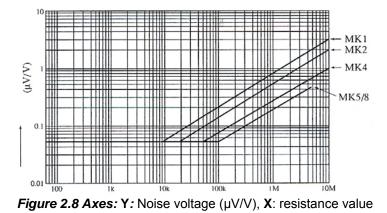
2.6 RESISTORS' ATTRIBUTES

- 1. *Resistance named value*: the value written on the body of the resistor in Ω .
- 2. *Named power*: the maximum thermal power the resistor can produce towards the environment, without getting destroyed; yet, is provided in a diagram by the manufacturer, in connection with the environment temperature. This is provided in Watts and specifies generally the dimensions of the resistor. Some standard power values are 1/8, 1/4, 1/3, 1/2, 3/4, 1, 2, 3, 4, 6, 7, 8, 10 etc. Watts.
- Resistance tolerance: the % change of the named value and is provided as ±A%. The standardized values of tolerance are for every each series the following: E3 and E6 ±20%, E12 ±10%, E24 ±5%, E48 ±2%, E96 ±1% and E192 ±0.1% or ±25% or ±0.5%. The series E192 for resistors of very high accuracy has also the tolerance values ±0.01%, ±0.02% or 0.05%.
- 4. *Maximum operation voltage*: that which causes the loss of warmth, as much as the named value of power and is provided by the following equation:


$$\mathbf{U}_{\max} = \sqrt{\mathbf{PR}_{\max}} \quad \begin{pmatrix} \mathbf{V}_{\mathrm{DC}} & \mathbf{\acute{\eta}} & \mathbf{V}_{\mathrm{RMS}} \end{pmatrix}$$

5. *Voltage factor*: the value expressing the change in the value of resistance, according to the voltage applied in its ends and is provided in ppm/V. this change is expressed approximately by this equation:

$$\mathbf{R}_{\mathbf{U}} = \mathbf{R}_{0} \left[1 + \mathbf{k}_{\mathbf{U}} \left(\mathbf{U} - \mathbf{U}_{0} \right) \right] \qquad (\Omega)$$

where R_U is the resistance in voltage U, R_0 and U_0 are the resistance and the reference voltage respectively and k_U is the voltage factor of the resistance, in ppm/V.

- 6. *Temperature coefficient*, in ppm/°C.
- 7. *Noise voltage*: the equivalent noise power voltage which describes a resistor and is provided in μ V/V, in relation with the resistance named value. On Figure 2.8 you can see the change of the noise power voltage for different types of metal film resistors.

8. *Non-linearity:* the % change of resistance which is caused by the applied voltage and is provided by the equation:

N.L
$$\% = \frac{\Delta R}{U_1} 100$$

It is also defined by the:

N. L = 20 log
$$\frac{U_1}{U_3}$$
 (dB)

where N.L is the non-linearity, that is the relationship between voltages of the basic and the third harmonic (the other harmonics are not considered), U_1 , U_3 are the voltages of the basic and the third harmonic respectively, which are produced by a resistor. In our measurements, we take the value of 10KHz for basic frequency. In Fig. 2.9 you can see the change of the non-linearity in relation with the value of metal film resistor.

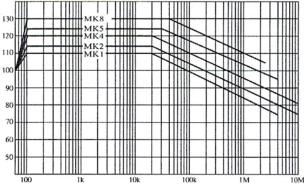


Figure 2.9 Axes Y: Non-linearity A3 (dB), X: resistance value

- 9. Slide ΔR/R %: it is the permanent change of the resistance which is provoked by the structural changes of the material. The slide is reducing exponentially in relation with time, which means that the older the resistor the more stable it is. This is why in very accurate circuits there are used components which have been submitted to artificial aging. High temperatures, humidity, large current and other factors can increase the slide of a resistor.
- 10. *Stability of a resistor*: this is the ratio given by the equation:

$$S\% = \frac{R_0 - \Delta R}{R_0} 100$$

where R_0 is the resistance in reference conditions and ΔR is the change of resistance. Fig. 2.18 shows how stable is the value of a resistor under specific operational conditions.

11. Operational temperatures: it is the range of values in which a resistor operates without problems. Depending on the type of resistor, those ranges differ: (-55~+155)°C or (-20~+250)°C etc.

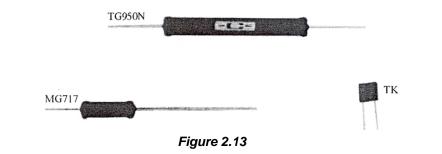
2.8.1.2. Between the common resistors we can find those with power ranging from 1/8W to 4W and in their coding, they (usually) comply with their color code.

The stable resistors of common forms are manufactured by various materials and are classified according to them because they have different attributes and consequently, different behavior.

Those resistors are: a) carbon composition, b) carbon film, c) metal film, d) wirewound, e) cermet film.

We are not going to refer at this point to the manufacturing technique and materials of resistors; we are going to work on their attributes, which are essential to technicians for confronting a problem with the right way. We present them in Table 2.3.

	i able 2.3							
a/a	Attributes	Carbon composition	Carbon film	Metal film	Wirewound	Cermet film		
1	Ονομαστική τιμή	1Ω ~ 10MΩ	1Ω ~ 10MΩ	0.1Ω ~ 125MΩ	0.015Ω ~ 4MΩ	10ΜΩ ~ 100ΜΩ		
2	Ονομαστική ισχύς (W)	1/8~2	1/8 ~ 2	1/8 ~ 30	1/10W ~ 1KW	0.4		
3	Ανοχή ±%	5, 10, 20	5	0.005 ~ 5	0.01 ~ 10	5		
4	Θεομοχοασιαχός συντελεστής ppm/°C	- 1200 ~ - 8000	- 150 ~ - 1000	- 100 ~ +150	- 200 ~ +400	± 300		
5	Περιοχή θερμοχρασιών λειτουργίας °C	- 55 ~ +130	- 55 ~ +155	- 55 ~ +275	- 55 ~ +450	0 ~ 130		
6	Σειφές Ε	3~24	24	24 ~ 192	6 ~ 192	24		
7	Σταθερότητα	Μέτρια	Καλή	Πολύ καλή	Καλή έως πολύ καλή	Καλή		
8	Τάση θορύβου μV/V	2 + log (R/109) R σε Ω	0.1 ~ 6.5 - 1000	0.1 ~ 1.5	< 0.1	0.1		
9	Ισοδύναμη χωρητικότητα pF	< 0.5	0.2 ~ 0.6					
10	Μέγιστη τάση λειτουργίας V _{DC}	200 ~ 500	200 ~ 700	(200 ~ 6000) V _{DC} (180 ~ 4000) V _{AC}	35 ~ 2500	≤ 1000		

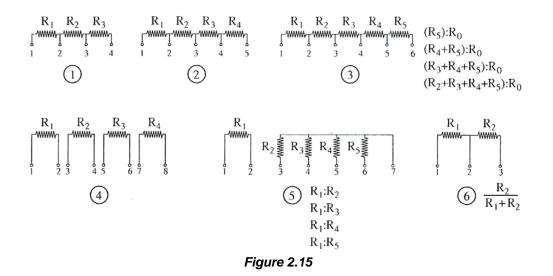

The above values are the extreme values for a type of resistor and are not globally applied to the specific type. For example, the carbon film resistors of 1/4W, the named values range from 1Ω to $10M\Omega$, while those of 1/8W, the values range from 2.2Ω to $4.7M\Omega$. Similarly, the temperature coefficient of the first is (-150 ~ -800)ppm/°C, while of the latter is (-100 ~ -700)ppm/°C. The same applies for the rest of the attributes and for all types of resistors. It is wise then, when this is necessary, to consult the manuals written by the manufacturers.

In Table 2.4 we present some values for the metal film resistors of very high voltage (Fig. 2.13). These are used in amplifiers and power packs of threading wave tubes (TWT), systems of x-rays, geophysical measurements, medical equipment and electronic microscopes. They

operate between almost -55 and +225 °C and their resistance tolerance value lies between ± 0.1 and $\pm 1\%$.

Named power (W)	Named resistance	Maximum operation voltage (V₀c)	Temperature coefficient (ppm/°C)
0.5	$200 \Omega \sim 5 M\Omega$	600	80
0.6	$400 \Omega \sim 20 M\Omega$	1000	80
0.8	600 Ω ~ 20 ΜΩ	2000	80
1	200 Ω ~ 50 MΩ	4000	25 & 80
1.5	$600 \Omega \sim 100 M\Omega$	6000	25 & 80
2	1 ΚΩ ~ 200 ΜΩ	10.000	25 & 80
2.5	1.5 ΚΩ ~ 200 ΜΩ	10.000	80
3	500 Ω ~ 300 ΜΩ	15.000	25 & 80
3.6	750 Ω ~ 300 ΜΩ	10.000	80
4	$4 M\Omega \sim 400 M\Omega$	20.000	25 & 80
5	$400 \Omega \sim 500 M\Omega$	25.000	80
6	$6 \text{ M}\Omega \sim 600 \text{ M}\Omega$	30.000	80
7.5	$600 \Omega \sim 750 M\Omega$	15.000	80
8	800 Ω ~ 1 GΩ	20.000	80
10	1 KΩ ~ 1.25 GΩ	25.000	80
15	$1 \text{ K}\Omega \sim 2 \text{ G}\Omega$	30.000	80

Table 2.4


Apart from the stable resistors, there are the voltage or current dividers in SIL form, as shown in Figure 2.14.

The voltage dividers are used in the power packs of TWT, in radar and x-rays systems and the high resolution cathodic tubes (screens). The current dividers are used in various meters. The voltage dividers are operating in temperatures between 55 and +175°C. We can find the voltage dividers in 2, 3, 4 and 5 tens with rations 10:1 to 10.000:1. In Table 2.5, you can see their attributes and figure 1~6 of the table corresponds to those of the Figure 2.15.

_										
Figure	R₁	R2	R₃	R₄	R₅	Resistance tolerance	Ratio resista- nce tolerance	Voltage factor (ppm/V)	Named voltage (V₅c)	Temperature coefficient of resistance ratio
1	99MΩ	90KΩ	10KΩ	—	·	±0.25%	±0.02%	0.02	1200	5
							±0.05%			10
2	9MΩ	900KΩ	90KΩ	10KΩ	-	±0.25%	±0.05%	0.02	1200	10
							±0.1%			
4	9MΩ	900KΩ	90KΩ	10KΩ	-	0~-0.5%	±0.1%	0.2	1200	5
								0.3		10
3	9MΩ	900KΩ	90KΩ	9KΩ	900Ω	±0.1%	±0.05%	0.2	1200	50
	9MΩ	900KΩ	90KΩ	10KΩ	1KΩ	±0.25%	±0.1%	0.3		
							±0.25%			
2	900KΩ	90KΩ	9KΩ	900Ω		±0.1%	±0.05%	0.3	1200	25
	900KΩ	90KΩ	9KΩ	1 KΩ	-	±0.25%	±0.1%	0.4		
							±0.25%			
3	9MΩ	900KΩ	90KΩ	9KΩ	900Ω	±0.1%	±0.1%	0.5	1200	50
	9MΩ	900KΩ	90KΩ	<u>9KΩ</u>	1KΩ	±0.25%	±0.25%			
5	10MΩ	1.1111MΩ	101.01KΩ	10.01KΩ	1.0001KΩ	±0.1%	±0.05%	0.1	1200	10
						±0.25%	±0.1%	0.5		50
						±0.5%	±0.25%			
							±0.5%			
3	9MΩ	900KΩ	90KΩ	9KΩ	900Ω	±0.1%	±0.05%	0.1		10
	9MΩ	900KΩ	90KΩ	9KΩ	1KΩ		±0.1%			15
6	99.9MΩ	100KΩ		-	-	±1%	±0.25%	-	10.000 στους	10
	99MΩ	1MΩ					±0.5%		+125°C	25

Table 2.5

In Figure 2.16 you can see the attributes of the current dividers. They operate in temperature ranging from -55 to +125°C.

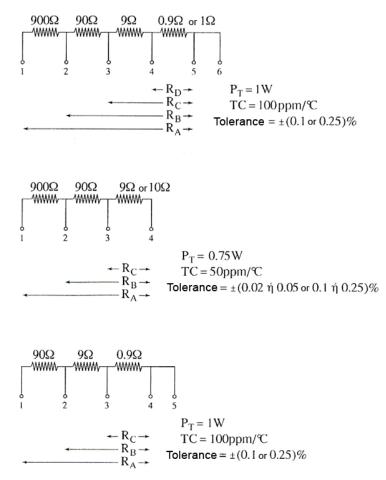


Figure 2.16

The voltage dividers have the code of their elements printed on their cortex, i.e. THV10-A-100M-1.0-10, where THV10 is the type of the divider (manifacturer's element), A=1000:1 is the voltage ratio and B=100:1, 100M-100M Ω is the value of the total resistance, 1.0 is the resistance ratio tolerance in the operational temperatures. We can then have a code like T912-A-10K-010-02 or 1776-C61, which must be encoded by the manual of the manufacturer. The same applies to the current dividers.

Note

In the market you can also find the stable "resistors" called Zero Ohm Link, or else, zero-value resistors, namely short circuits. They usually are yellow (see Figure 2.17) and 1/4W, which values ranging from 0.002Ω to 0.01Ω . They are used for short circuits, that is, for linking two different points in a circuit. They have almost zero distributed capacity and self-inductance.

We must mention that the color of the resistor body refers to the category it belongs to according toy the Diagram 2.1.

If the color of the body of a common resistor is:

- a. light blue, it is a high value/high voltage resistor;
- b. grey, it is a safety resistor;
- c. green, it is an accuracy or high accuracy resistor;
- d. brown or green, it is a wirewound resistor;
- e. red, it is a metal film resistor;
- f. black, it is an accuracy wirewound resistor;
- g. brown or light green or rarely red-brown, it is a standard resistor.

In f, the resistors don't comply with the color code but with the second way of encoding. The manufacturers give eigen functions or nomograms for the behavior of resistors, as that of the slide Δ R/R%, of the increase of thermal point temperature in relation with the power or the length of the connectors, of the allowed maximum voltage or power of the pulse peak in relation with the pulse duration etc. In Fig. 2.18a we provide the change in the temperature of the thermal point in relation with the consumption power and in Fig. 2.18b, we provide the respective change for different lengths of resistors connectors.

In Table 2.13 we show the applications of thermistors.

		Tabl	le 2.	.13		
	Demagnetizing	- color TV - monitor			Tomporatura	 home appliances car systems
U	Temperature sensor – Protection from	 - industrial electronics - power packs - electronic data process 		U	Temperature sensor	 industrial electronics medical equipment electronics
PT	temperature	- telecommunications		NTC	Overcharging limiter	- power packs - light
	Protection from	- car systems			mme	- electronic data process
	overcharging	 industrial electronics commercial electronics electronic data process 			Temperature compensator	 commercial electronics industrial electronics electronic data process

1) NTC

When the temperature rises, the resistance of NTC decreases. The resistance changes according to the equation:

$$R_{T_1} = R_{T_2} \cdot e\left(\frac{B}{T_1} - \frac{B}{T_2}\right) \quad \dot{\eta} \qquad R = A \cdot e^{B/T} \qquad \dot{\eta} \qquad \log R = A + \frac{B}{T}$$

where T is the operational temperature in K and A, B are the dependent on the material factors. B ranges between 2000 and 5000K.

A and B remain almost constant between T₁ and T₂ temperatures, in which NTC operates; our measurement temperatures are 25°C and 85°C respectively. The manufacturers provide us with the resistance of NTC in 25°C and 85°C and the index B_{25/85} in Kelvin. B is given by the equation:

$$B = \frac{\ln \frac{R_1}{R_2}}{\frac{1}{T_1} - \frac{1}{T_2}}$$
 (K)

where R_1 and R_2 are the measured resistance in T_1 and T_2 temperatures. There is also the factor α of a NTC given by the equation:

$$\alpha = -\frac{B}{T_2}$$

The eigen function of voltage-intensity for a common NTC is shown in Fig. 2.48, which is printed on logarithmic paper. We notice that apart from the voltage and intensity, we are also provided with the resistance and power of NTC, so in case we know its voltage and intensity, we can conclude its power or its resistance.

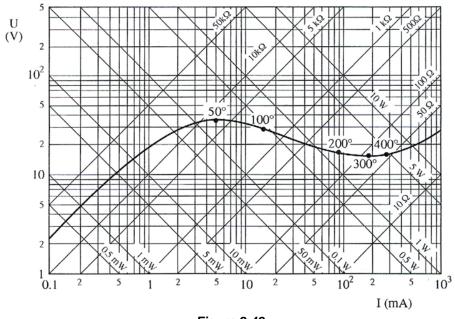
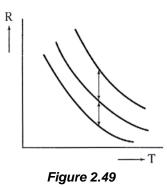
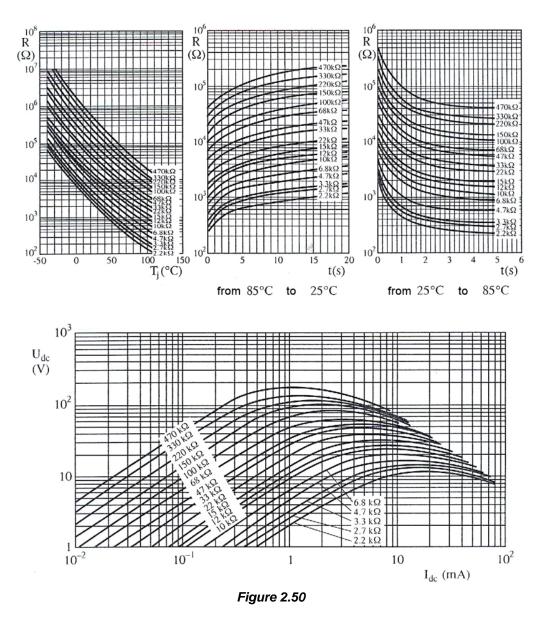



Figure 2.48

- The thermal time constant of the element expresses in sec the time needed for the thermal balance between element and environment to come. This results from the equation $\tau=H/\delta$, where H is the thermal capacity in J/K and δ is the loss factor in W/K.

- The tolerance on the resistance named value of NTC is the one given for the reference temperature of 25°C, that is for R_{25} , and is a result of the divergence of B. In Fig. 2.49 you can see the change of R_{25} in relation with the temperature for some given tolerance.


- Temperature divergence ΔT is the range of temperatures in which NTC has a stable resistance value and results from the equation:

 $\Delta T = \frac{Z}{\alpha}$

where Z is the total divergence and is about Z=Y+X, where X is the tolerance R_{25} and Y is the divergence of the resistance value which is owed to B, that is $\Delta R/B_{total}$.

If for instance X=±5%, Y=0.89% and α =5.09%K in 0°C for R₂₅=10K Ω , then Z=5+0.89=5.89% and Δ T=5.89/5.08=1.16, which means that this particular NTC is 32.51K Ω in ±1.16°C. The value 32.51K Ω comes from the tables RT/R25 of the manufacturers.

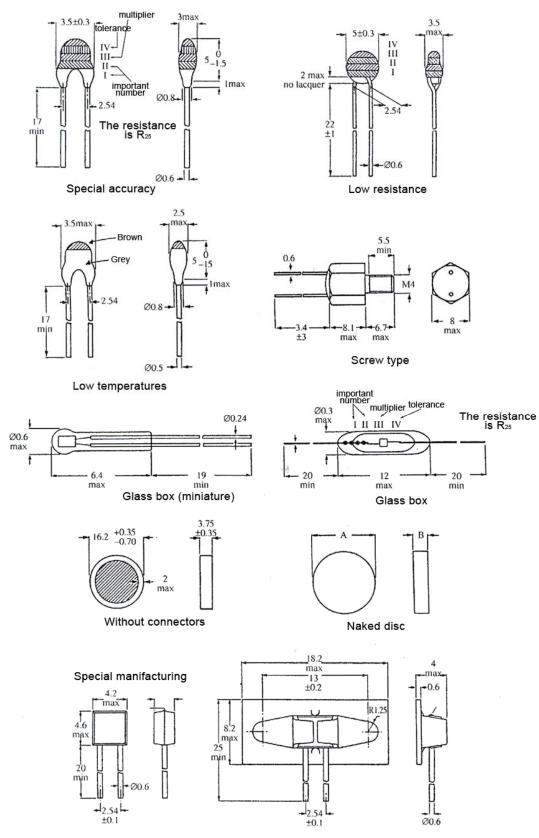
In Fig. 2.50, we show the eigen functions $R=f(T_j)$, that is from 85°C to 25°C, $R=f(t_{heating})$, that is from 25°C to 85°C and $U_{DC}=f(I_{DC})$ for a set of common NTC.

In Table 2.14 we present attributes of different NTC types.

Table 2.14

NTC (overcurrent limiters) Without s/n Attributes High power High current connectors 1 4-8-15-33 2.5~20 $R_{25}(\Omega)$ 5 2 Tolerance R₂₅ (±%) 20 10-20 25 2850-3250 2950-3600 3 B_{25/85} (K) 2975 Tolerance B_{25/85} (±%) 4 5 -5 Operational temperatures (°C) -25~+155 -25~+125 -25~+155 6 Maximum power (mW) 1000 I_{RMS(max)} 8A* I_{RMS(max)} (2.5~15)A* 7 60 148 Thermal constant of time (sec) 8 Red stain in Code Color code the centre

* We are provided with I_{RMS(max)} in A and not the power.


NTC are used in industrial and medical thermometers, in temperature measurements in radiators, in indicators of fluid and liquid levels, as temperature sensors with bridge amplifier, thermostats, action hysterisis in relays, correction of temperature in push-pull amplifier, overcurrent limiters in power supplying of bulbs etc.

-		IK~IM	connectors 930Ω-2.6 K	IK~1M	(2.2-470) K 3-3.0-1.5	tang connectors 10K.Ω	 special manufacturing 12KΩ 310KΩ	ILC	ratures temperature 15.3KΩ 5KΩ 18.5KΩ 10KΩ	I Low Medium I Low Medium I Low $(Entroperatures (Emperatures (Emperature))) R R_{10}^{-1} - 15.3 KD 5 KD R_{10}^{-1} - 5 KD 10 KD R_{10}^{-1} - 5 KD R_{10}^{-$	Low Meduum temperature temperature R_{10} =15.3K Ω 5K Ω R_{30} –48.5K Ω 10K Ω
- 2-10	5-10	5-10	10	5-10	5-10	5	5-7	2 5.7 3 1	3.2	3.2	5 5 5 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5
- 2675~3975	410 3797	2075-410 0	3500-4100	2075-4100	3977~475 0 2675~397 5	3993	3750 4300	3977 3750 4300		3977	3977 3977 3965 -
- 5	3	5	5	5	0.75~3	1.2		- 0.5		0.5	- 0.5 - 0.5
+300 0-+555 -25-+125	200 +25~+300	-55~+200	-55~+200	+20 -55~ +20 +30 +30	-25-+100	-40-+125	-10-+125 -25-+200	-40-+125 -10-+125 -25-+200		40~+125	- -55-+125 -40-+125
100 500	100	ı		60 100 100	500	100	250	100 250	-	100	250 100
6 17		4		5.5 10 7.5	7.5 20	i	5 ¹ ~33 8.5 ⁺ ~33	- 5 ¹ ~33 8.5 ⁺ ~33	11 - 5 ¹ -33 8.5 ⁺ -33	L	-
- Color code			Orange or yellow ring	Color code Color code		Black body	Grey stain Blue stain	Grey body Grey stain Blue stain		Grey body	Brown blue Grey body in grey body Grey body

ŝ	
-	
200	
-	
- 32	
-	
52	
1	
1	
-	
13	
~	
	ł
e	
_	
0	
-	
_	
5	
0	
-	
م ا	
0	
~~	
5	
-	
-	ł
9	
-	
-	
-	
- 02	
Sand	
-	
~	
50	
-	1
5	
45	
~	
- 02	
13	
~	
-	
_	
5	
c0	
5	
13	
~	
0	
_	1
1	
43	
	
E-mail	
-	
7 \	
\smile	
~	
-	
E	
F	
Z	
Z	

⁺ With cooler

Table 2.14

In Fig. 2.51 we present various packages of NTC.

Figure 2.51